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A field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that
appear in the Stratton–Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of
the electric field are obtained directly from surface integral equation solutions of three scalar Helmholtz equations
for the field components. The divergence-free condition is enforced via a boundary condition on the normal com-
ponent of the field and its normal derivative. Field values and their normal derivatives at the surface of the PEC are
obtained directly from surface integral equations that do not contain divergent kernels. Consequently, high-order
elements with fewer degrees of freedom can be used to represent surface features to a higher precision than the
traditional planar elements. This theoretical framework is illustrated with numerical examples that provide further
physical insight into the role of the surface curvature in scattering problems. © 2020 Optical Society of America
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1. INTRODUCTION

The macroscopic Maxwell equations describe the interaction
between electromagnetic waves and matter that impacts on
almost every aspect of our daily life ranging from daylight [1,2]
to communication [3], food processing [4], energy harvesting
[5–7], as well as biomedical sensing and therapy [8–10]. Because
it is only possible to obtain analytical solutions to Maxwell’s
equations for scatterers with canonical geometries (e.g., planes,
cylinders, and spheres [11–13]), an efficient numerical solution
is required to tackle practical problems. In general, numerical
solutions to Maxwell’s equations in linear, homogeneous media
fall into two categories: methods that discretize the 3D spatial
domain such as the finite-difference time-domain method
[14,15] and the finite element method [16], or methods based
on 2D surface integral formulation methods using Green’s
theorem [17]. When compared to 3D domain methods, the sur-
face integral methods have some distinct advantages. The most
obvious advantage is that the number of dimensions in a prob-
lem is reduced by one. Another advantage is that for exterior
problems, the Sommerfeld radiation condition [18] is satisfied
directly without the need to use artificial absorbing boundary
conditions at infinity. Furthermore, it was noted by Martin
in [19] that there is a close connection between the surface

integral equations (SIEs) and Waterman’s T-matrix method
[20], which is commonly used in single and multiple scattering
problems [21–23]. Recently, the surface- and volume-based
integral equations have been used to compute the T-matrix
[24,25] in order to avoid numerical instabilities associated with
the null-field method (extended boundary condition method)
when the shape of a scatterer is significantly different from a
sphere [26]. For a comprehensive database of the T-matrix uses
in electromagnetic scattering, see [27] and references therein.

In general, the current popular industry-standard surface
integral approaches are based on the Stratton–Chu [28,29] or
the Poggio–Miller–Chew–Harrington–Wu–Tsai (PMCHWT)
[30–33] formulation that involve solving for the surface elec-
trical current density J and the magnetic current density M
[34–37] as the intermediate boundary unknowns. In these
approaches, the divergence-free condition on the fields is
satisfied implicitly. To enforce current conservation at each
surface element, the Rao–Wilton–Glisson (RWG) vector basis
functions [38] are commonly used to represent the current
densities. Due to the use of the continuity equation between
the surface charge and the surface current, such formulations
suffer from numerical instabilities in the long wavelength limit
that is also referred to as the zero frequency catastrophe [39,40].
The surface integral equations have integrands with strong
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singularities [41] that make an accurate evaluation of the field
or its derivatives at or near the surface of the scatterer difficult.
This is because one typically employs a singularity subtraction
technique to partition the singular Green’s function into a
singular part that can be integrated analytically and a smooth
nonsingular part that is integrated numerically, e.g., see [42] and
references therein. This approach is cumbersome, laborious,
and may not yield accurate values near the scatterer because it
needs to be performed not only when the source and field points
coincide but also when they are near each other.

Another formulation of the surface integral method is based
on the scalar and vector potentials φ and A [39,43], where the
surface charge and the surface current are chosen as the bound-
ary unknowns. Although these integral equations still involve
singular kernels, they do not suffer from numerical instabilities
at or near zero frequency. Therefore, the φ and A formulation
is often used in plasmonic applications where the size of the
scatterer is small relative to the incident wavelength.

In a physical scattering problem, the field quantities are
finite and well-defined at material boundaries. Thus, it seems
reasonable that it should be possible to develop a surface integral
formulation that does not contain singularities in the integrals;
after all, the origin of the singularities is mathematical and does
not have a physical basis. Furthermore, in applications such
as micro-photonics it is desirable to be able to obtain directly
accurate values of the electromagnetic fields and their derivatives
on boundaries without further post-processing.

Recently, there have been two independent and successful
attempts to develop a boundary integral method that solves
Maxwell’s equations directly for the electric field, E . These
approaches are very different from the surface integral methods
reviewed above. In one approach, the divergence-free condition
on the electric field is replaced by a scalar Helmholtz equation
for r · E via a vector identity [44,45], where r is a space position
vector. This, together with the scalar Helmholtz equation for
each of the three Cartesian components of E , provides a set of
four coupled scalar wave equations to be solved. In the other
approach, the divergence-free condition is replaced with an
equivalent boundary condition [46–49]. This formulation
directly leads to three scalar integral equations. However, the
kernels of these three integral equations are singular.

In this paper, we develop a fully desingularized surface inte-
gral formulation for electromagnetic scattering that facilitates
the direct solution of the electric or magnetic field and their nor-
mal derivatives at the material boundaries. This is accomplished
by introducing the fully desingularized boundary integral
method [44,45] into the singular integral formulation based
on the divergence-free boundary condition [46–49]. In other
words, we combine the two methods mentioned in the previous
paragraph to obtain a boundary integral method containing
three coupled scalar nonsingular surface integral equations.
This formulation is consistent with the notion that given the
scattering problem entails no singular behavior at boundaries,
the theoretical formulation should not contain mathematical
singularities either.

The physical basis of this formulation is conceptually simple
and can provide direct access to values of the field and its normal
derivative at boundaries. The absence of mathematical singu-
larities allows for the use of simple algorithms that are efficient

and accurate. In order not to obscure the physical and math-
ematical simplicity of the method, we only consider smooth
perfect electrical conductor (PEC) scatterers. The extension
of this method to dielectric scatterers will be provided in our
forthcoming paper [50].

The paper is organized as follows. In Section 2, we present
the mathematical formulation of the method together with a
simple physical interpretation of the key boundary condition. In
Section 3, we discuss the numerical formulation of the method,
and in Section 4, we present some numerical examples. Finally,
in Section 5, we summarize the main features of the method and
conclude the paper.

2. FORMULATION

We illustrate our formulation with the scattering of an incident
plane wave by 3D perfect electrical conductors. In the frequency
domain with time dependence exp(−iωt), the propagating scat-
tered electric field E sc in a source-free region is given by

∇
2 E sc
+ k2 E sc

= 0, (1a)

∇ · E sc
= 0, (1b)

where the wavenumber k =
√
εµω with ε andµ being, respec-

tively, the permittivity and permeability of the medium. The
incident field E inc and the total field E tot

= E inc
+ E sc also

satisfy Eq. (1). The divergence-free condition Eq. (1b) implies
there are only two independent components of E sc. Given
an incident wave, such as a plane wave E inc

= E 0 exp(ik · r)
(where r = (x , y , z) is the position vector, E 0 · k= 0, |k| = k),
Eq. (1) can be solved by imposing the boundary conditions.
These boundary conditions require the two independent tan-
gential components of E tot to vanish on the surface of the PEC
and each component of the scattered field, E sc, to satisfy the
Sommerfeld radiation condition [51] at infinity.

The solution of the vector wave equation Eq. (1a) can be
expressed as the solution of the surface integral equation for each
Cartesian component of the scattered field, i.e., {E sc

x , E sc
y , E sc

z }.
To see this, we apply Green’s second identity outside the PEC
scatterer to obtain

c 0(r0)E sc
α (r0)+

∫
S

E sc
α (r)

∂G(r, r0)

∂n
dS(r)

=

∫
S

∂E sc
α (r)
∂n

G(r, r0)dS(r), α = x , y , z, (2)

where G(r, r0)= exp(ik|r − r0|)/|r − r0| is the free-space
Green’s function, ∂/∂n = n · ∇ is the normal derivative, and n
is the unit normal that points into the scatterer. The integration
(source) point r is on the surface of the scatterer and if r0 is
located outside the scatterer, then c 0 = 4π . If r0 is on the surface
S, then c 0 is the solid angle subtended at r0 and is equal to 2π if
the tangent plane is continuous at r0.

It is important to realize that a solution to Eq. (2) may or may
not satisfy the divergence-free condition Eq. (1b). An elegant
way to ensure that the electric field satisfies the divergence-
free condition in a 3D domain was proposed by Yuffa and
Markkanen [47]. It uses the fact that if the divergence-free
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condition exists at all points on the surface S, then the electric
field is divergence-free everywhere in the 3D domain. This
fact was rigorously proved in their paper [47]; however, their
proof is rooted in differential geometry and is rather technical.
Thus, we offer an alternative proof based directly on the fact
that ∇ · E sc satisfies the scalar Helmholtz equation. To see this,
we note that E sc is differentiable and satisfies the vector wave
equation Eq. (1a). Thus, any partial derivative of E sc will also
satisfy Eq. (1a), and therefore we can write

∇
2(∇ · E sc)+ k2(∇ · E sc)= 0. (3)

The solution to Eq. (3) can be expressed in the usual surface inte-
gral representation via Green’s second identity to obtain

c 0(r0) [∇ · E sc(r0)]+
∫

S
[∇ · E sc(r)]

∂G(r, r0)

∂n
dS(r)

=

∫
S

∂ [∇ · E sc(r)]
∂n

G(r, r0)dS(r). (4)

The above equation expresses the value of∇ · E sc at an arbitrary
point r0 outside of the scatterer in terms of the values of∇ · E sc

and its normal derivative ∂[∇ · E sc
]/∂n on the surface S (r is

always located on S). From Eq. (4), we see that if ∇ · E sc van-
ishes on S and we set r0 on S, then the left-hand side of Eq. (4)
is zero. Therefore, ∂[∇ · E sc

]/∂n is zero as well on the surface S
provided that the frequency is different from any of the internal
resonance frequencies [51–54]. Now, applying Eq. (4) with r0

outside of the scatterer and not on the surface S, we conclude
that ∇ · E sc(r0)= 0 outside of the scatterer provided that
∇ · E sc vanishes on S.

The value of ∇ · E tot on the surface, or rather its limiting
value as one approaches the surface, may be found by first
decomposing E tot along the normal n and the two tangential
unit vectors, {t1, t2}, and then computing the divergence. The
details of this derivation are provided in Appendix A with the
final result given by Eq. (A12) (also see Eq. (23) in [47]), i.e.,

n ·
∂E tot

∂n
− κE tot

n +
∂E tot

t1

∂t1
+
∂E tot

t2

∂t2
= 0, (5)

where κ is the mean curvature. In Eq. (5), E tot
n = n · E tot and

{E tot
t1 = t1 · E tot, E tot

t2 = t2 · E tot
} are the normal and tangen-

tial components of E tot, respectively, and {∂/∂t1, ∂/∂t2} are the
tangential derivatives on the surface. On the surface of the PEC
scatterer, the tangential components of E tot vanish and Eq. (5)
reduces to

n ·
∂E tot

∂n
= κE tot

n . (6)

From Eq. (6), we see that on the surface of the PEC scatterer the
normal component of the normal derivative of E tot and the nor-
mal component of E tot are proportional to each other. This is a
direct consequence of the boundary condition E tot

t1 = E tot
t2 = 0

and the divergence-free condition, ∇ · E tot
= 0 on S. This

relation will also ensure that E tot is divergence-free in the 3D
domain outside the scatterer.

The result Eq. (6) has a simple physical interpretation. From
elementary electrostatics, the field emanating from a charged

infinite planar PEC is constant, i.e., ∂E tot/∂n = 0, and is
directed normal to the surface. In Eq. (6), E tot

n is the induced
charged density on the PEC surface and so n · ∂E tot/∂n can
only be nonzero if the PEC has a nonzero curvature κ .

In summary, the electric field due to scattering by PEC
scatterers can be found by solving the three scalar surface inte-
gral equations contained in Eq. (2) for each of the Cartesian
components of the scattered field E sc and imposing the bound-
ary condition Eq. (6) together with the condition that the
two tangential components of E tot vanish on the boundary.
These constitute the necessary and sufficient conditions to
determine the scattered field E sc and also to ensure that E sc is
divergence-free as required.

Similarly, the magnetic field can be found by solving the
surface integral equation corresponding to Eq. (2) for the
scattered H sc field with the boundary condition n · H tot

= 0
at the PEC surface. To apply the boundary condition on
the tangential components of E tot, we choose two orthogo-
nal unit tangents t1 and t2 on S, and use Ampere’s law to
express the component of E tot parallel to say, t1, namely,
E tot

t1 = t1 · E tot
= E tot

· (t2 × n), in terms of H tot [44]:

E tot
t1 = t2 · (n× E tot)=

i

ωε

[
t2 · (n×∇ × H tot)

]
(7a)

=
i

ωε

[
n · (t2 · ∇) H tot

− t2 · (n · ∇)H tot]
= 0, (7b)

with a similar expression for E tot
t2 obtained by interchanging sub-

scripts 1 and 2 in Eq. (7).

3. NUMERICAL IMPLEMENTATION

The boundary integral solution of Eq. (2) for components of
the field is conceptually straightforward. For any scalar function
p(r) that satisfies the Helmholtz equation, Green’s second
identity gives a surface integral relation between p(r) and its
normal derivative ∂p/∂n at points r and r0 on the boundary.
But all singularities associated with Green’s function G(r, r0)

can in fact be removed analytically to give [55,56]∫
S+S∞

[
p(r)− p(r0)g (r)−

∂p(r0)

∂n
f (r)

]
∂G
∂n

dS(r)

=

∫
S+S∞

[
∂p(r)
∂n
− p(r0)

∂g (r)
∂n
−
∂p(r0)

∂n
∂ f (r)
∂n

]
GdS(r),

(8)

where S∞ denotes an artificial surface at infinity. The require-
ment on f (r) and g (r) is that they satisfy the Helmholtz
equation and the following conditions at r = r0 on the
surface S:

f (r)= 0 and n · ∇ f (r)= 1, (9a)

g (r)= 1 and n · ∇g (r)= 0. (9b)

Examples of simple choices of f (r) and g (r) can be found
in [55,56]. Thus, if p (or ∂p/∂n) is given, then Eq. (8) can
be solved for ∂p/∂n (or p) in a straightforward manner. This
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is because if f (r) and g (r) obey Eq. (9), then the terms that
multiply G and ∂G/∂n vanish at the same rate as the rate of
divergence of G or ∂G/∂n as r→ r0. Consequently, both
integrals in Eq. (8) have nonsingular integrands, and thus can
be evaluated accurately by quadrature; see [55,56] for details.
Note that the solid angle, c 0 at r0 has also been eliminated in
Eq. (8).

In our implementation, p and ∂p/∂n are the unknowns to
be solved for at the chosen nodes on the surface. The surface
shape is represented by quadratic surface elements anchored at
these nodes and the variation of function values within these
elements are found by quadratic interpolation from the nodal
values [44,45] (see Appendix B). Since the integrals do not have
divergent kernels, the integration can be evaluated using the
standard Gauss quadrature. This facilitates the reduction of
the number of degrees of freedom while increasing numerical
precision. Also, with high-order surface elements, the surface
geometries can be represented more faithfully than with planar
elements. Finally, with the help of Eq. (6), a matrix system can
be constructed where the unknowns are n · E sc and the two
tangential components of ∂E sc/∂n at each node as detailed
below.

Given that the tangential components of the total electric
field vanish on the PEC surface, we can express the scattered
field in terms of its normal component and the tangential
components of the incident field E inc as

E sc
= E sc

n n− E inc
t1 t1 − E inc

t2 t2. (10)

Similarly, we can decompose the normal derivative of the scat-
tered field on the surface of the scatterer in terms of its normal
and tangential components to obtain

∂E sc

∂n
=

(
n ·
∂E sc

∂n

)
n+

(
t1 ·

∂E sc

∂n

)
t1 +

(
t2 ·

∂E sc

∂n

)
t2.

(11)

Also, Eq. (6) can be written in terms of the scattered and inci-
dent fields as

n ·
∂E sc

∂n
= (n · E sc) κ +

(
n · E inc) κ − n ·

∂E inc

∂n
. (12)

Introducing Eq. (12) into Eq. (11), then using the result
together with Eq. (10) in the nonsingular surface integral Eq. (8)
for each Cartesian component of the scattered field, we obtain
the desired linear system. Namely,

nx (H− κG) −t1xG −t2xG

n y (H− κG) −t1yG −t2yG

nz(H− κG) −t1zG −t2zG




E sc
n

t1 ·
∂E sc

∂n

t2 ·
∂E sc

∂n

=

Cx

Cy

Cz

,
(13a)

where

Cα =H
(
t1αE inc

t1 + t2αE inc
t2

)
+ nαG

(
κE inc

n − n ·
∂E inc

∂n

)
,

(13b)

and α = x , y , z. In Eq. (13), G and H are the numerical matrix
versions of Eq. (8) such that H · p = G · ∂p/∂n, where p and
∂p/∂n are now column vectors; see Appendix B.

4. ILLUSTRATIVE NUMERICAL RESULTS

Consider scattering of the plane wave E inc
= E0 exp(ikz)x

from a PEC sphere of radius a . In Fig. 1, a graphical confirma-
tion of the validity of the boundary condition Eq. (6) is shown,
where each term in Eq. (6) is calculated using the analytical Mie
series solution [57]. The equality of the two sides of Eq. (6) for
ka = 0.1 and ka = 5, a 50-fold variation in ka , at various points
on the sphere is clearly evident. Note that the sphere with a
smaller radius (larger mean curvature, κ = 2/a ) has larger range
of magnitudes for the field gradient.

The accuracy of our SIE method to calculate the field
gradient n · (∂E tot/∂n) is demonstrated in the inset of
Fig. 1. For ka = 1, the relative difference between our SIE
results and those from the Mie series is less than 1% when
|n · (∂E tot/∂n)/E0| ∼ 1. This field gradient is found directly in
our formulation and does not require additional post-processing
that might reduce the numerical accuracy.

It is well known that the surface current formulation of com-
putational electromagnetics suffers from a numerical instability
in the long-wavelength (zero frequency) electrostatic limit due
to the use of the charge-current continuity condition [39]. In
contrast, the present field-only formulation does not suffer from
this deficiency. To demonstrate this, we consider a PEC prolate
spheroid of aspect ratio 2:1 embedded in an electrostatic field
(k = 0) and polarized along the x axis. In Fig. 2, we compare the
electric field at points on a circle of radius 1.05 times the major

Fig. 1. Graphical confirmation of the boundary condition Eq. (6) is
shown. This boundary condition follows from enforcing ∇ · E tot

= 0
on the boundary and relates n · E tot to n · (∂E tot/∂n). The n · E tot

and n · (∂E tot/∂n) quantities are obtained from the Mie series solution
with ka = 0.1 (open red symbols) and ka = 5 (solid blue symbols).
Inset: comparison of the magnitude of field gradient |n · (∂E tot/∂n)|
is shown at 642 nodes connecting 320 quadratic area elements that
span the PEC surface obtained via our surface integral equation (SIE)
method (solid symbols) and via the Mie series when ka = 1.
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Fig. 2. Comparisons of the electric field along the dotted circle
of radius 1.05 times the semi-major axis in the plane y = 0 obtained
from our SIE method at k = 0 with 2562 nodes and 1280 quadratic
elements (open symbols) and the analytical solution [29] (lines). Inset:
graphical confirmation of the boundary condition Eq. (6) based on the
analytical solution [29].

Fig. 3. Total electric field E tot and radar cross section (inset) in the
plane y = 0 around a PEC cuboid with rounded corners due to an
incident electric field E inc

= E0 exp(ikz)x . Results are obtained using
3482 nodes and 1740 quadratic elements.

semi-axis around the ellipsoid with the analytical solution [29]
in which the maximum relative difference of the electric field
magnitude between the analytical solution and the numerical
result is less than 4%. In the inset of Fig. 2, we also confirm the
boundary condition Eq. (6).

Strictly speaking, our method requires a well-defined tangent
plane, and thus it is only strictly valid for smooth scatterers.
Previously, we applied our singular integral surface equations
given by Eq. (2) to a cube with sharp edges [48]. Even though
it is theoretically difficult to justify using Eq. (2) on nonsmooth

scatterers, we found that our singular SIE performed better than
the PMCHWT in terms of the condition number of the matrix
system with respect to the mesh size [48]. Armed with these
encouraging results, we applied our nonsingular formulation to
a cube with rounded edges, where the radius of the edge was cho-
sen so that redge� λ. The radar cross sections (RCSs) obtained
for our smoothed cube agreed well with the RCSs obtained
for a cube with sharp edges for simple orientations considered
in [58].

In Fig. 3, we show a new example of the field in the plane
y = 0 around a PEC cuboid with side l and kl = 10 that is
oriented at the angle α = π/8 to the propagation direction of
the incident plane wave. The center of the cuboid is located at
the origin. The total field vectors are shown, and the magnitude
of the x -component of the total field (the component parallel
to the polarization of the incident field) is illustrated on a color
scale. The radar cross section on the y = 0 plane in the far field is
shown in the inset of Fig. 3.

5. CONCLUSIONS

The field-only formulation of computational electromagnetics
developed here has a number of meritorious features:

1. The formulation is conceptually simple, it only involves
solving the Helmholtz equation for components of the
field with the divergence-free constraint as a boundary
condition.

2. Physically important values of the field and its normal
derivative at the surface are obtained directly without the
need to work with intermediate quantities such as the
surface current densities.

3. The method does not involve hypersingular integrals [59]
and is unaffected by the zero frequency catastrophe [39].

4. Technically, the solutions of scalar Helmholtz equations
are implemented using a recently developed nonsingular
method [44,45,56] employing quadratic surface elements
that affords higher precision with fewer degrees of freedom
as well as being better able to represent the geometry of the
surface than planar surface elements.

5. The reliance on only finding the solutions of scalar
Helmholtz equations may also be advantageous in solv-
ing time-domain scattering problems using the inverse
Fourier transform [60].

In short, the constructed framework is accurate, relatively
easy to implement, and works directly with the quantities of
physical interest.

APPENDIX A: DIVERGENCE-FREE CONDITION

The divergence-free condition, ∇ · E = 0 on S, can be rewrit-
ten by decomposing E along the surface normal direction and
the surface tangential plane; see Fig. 4. The normal component
and the two tangential components are defined by

En ≡ n · E , E t1 ≡ t1 · E , and E t2 ≡ t2 · E , (A1)

respectively. Thus, by definition, on the surface S we have

∇ · E ≡∇ ·
[
Enn+ E t1 t1 + E t2 t2

]
. (A2)
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Fig. 4. Sketch of the unit normal vector n, the unit tangential vec-
tors t1 with t1 · n= 0 and t2 = n× t1 on the surface of the scatterer.

Expanding Eq. (A2) yields

∇ · E = (n · ∇) En + En∇ · n+ (t1 · ∇) E t1

+ E t1∇ · t1 + (t2 · ∇) E t2 + E t2∇ · t2, (A3a)

where

(n · ∇) En = n · [(n · ∇)E ]+ E · [(n · ∇)n] . (A3b)

In order to evaluate Eq. (A3), we choose a local Cartesian
coordinate system with the orthonormal basis (x , y, z) located
at the point r0 on the surface S. The local Cartesian coordi-
nate system is aligned so that the normal at r0 is along z and
the surface tangents are along x and y. We will assume that
the surface around r0 is locally quadratic and thus, the points
r = (ξ1, ξ2, ζ ) that lie on the surface near r0 obey the relation

8(ξ1, ξ2, ζ )≡ ζ −
1

2
κ1ξ

2
1 −

1

2
κ2ξ

2
2 = 0, (A4)

where κ1 and κ2 are the principal curvatures at r0. The gradient
operator in the local coordinates is

∇ ≡ x
∂

∂ξ1
+ y

∂

∂ξ2
+ z

∂

∂ζ
, (A5)

the unit normal at r is

n=
∇8

|∇8|
=

(−κ1ξ1,−κ2ξ2, 1)

[1+ (κ1ξ1)
2
+ (κ2ξ2)

2
]
1/2 , (A6)

and the unit tangent vectors are

t j =
∂ r/∂ξ j

|∂ r/∂ξ j |
, where j = 1, 2. (A7)

Thus, at a point on S, i.e., r = (ξ1, ξ2, ζ )=

(ξ1, ξ2,
1
2κ1ξ

2
1 +

1
2κ2ξ

2
2 ), we have

t1 =
(1, 0, κ1ξ1)

[1+ (κ1ξ1)
2
]
1/2 and t2 =

(0, 1, κ2ξ2)

[1+ (κ1ξ2)
2
]
1/2 . (A8)

Furthermore, at r = r0 = (0, 0, 0), we also have the follow-
ing identities:

∇ · n=−(κ1 + κ2)≡−κ, (A9a)

∂n
∂n
= (n · ∇)n= 0, (A9b)

∂n
∂t1
= (t1 · ∇)n=−κ1t1, (A9c)

∂n
∂t2
= (t2 · ∇)n=−κ2t2, (A9d)

∇ · t1 = 0, (A10a)

∂ t1

∂t1
= (t1 · ∇)t1 = κ1n, (A10b)

∂ t1

∂t2
= (t2 · ∇)t1 = 0, (A10c)

∇ · t2 = 0, (A11a)

∂ t2

∂t1
= (t1 · ∇)t2 = 0, (A11b)

∂ t2

∂t2
= (t2 · ∇)t2 = κ2n, (A11c)

where κ = κ1 + κ2 is the mean curvature. Introducing
Eqs. (A9), (A10), and (A11) into Eq, (A3), we obtain the
desired result, namely,

∇ · E = n ·
∂E
∂n
− κEn +

∂E t1

∂t1
+
∂E t2

∂t2
= 0. (A12)

APPENDIX B: NUMERICAL IMPLEMENTATION
OF H OR G
When the surface S of the scatterer is discretized into M (bound-
ary) elements connected by N nodes, the integrals in Eq. (8) can
be evaluated by quadrature over each element, which leads to the
numerical matrix version of Eq. (8), namely,

H · p = G ·
∂p
∂n

. (B1)

In Eq. (B1), H represents influence matrix corresponding
to the vector column p at N nodes, and G represents influence
matrix corresponding to the vector column ∂p/∂n at N nodes.

For example, we can partition the surface S into quadratic
triangular area elements SE where each element is formed by
three nodes on the vertices and three nodes on the edges. As
shown in Fig. 5, in terms of the local coordinates (ξ, η) and
ν ≡ 1− ξ − η, the coordinates of a point within each element
and the function values at that point are expressed by quadratic
interpolation from the values at the nodes using the standard
quadratic interpolation function:

φ = ν(2ν − 1)φ1 + ξ(2ξ − 1)φ2 + η(2η− 1)φ3

+ 4νξφ4 + 4ξηφ5 + 4ηνφ6, (B2)



282 Vol. 37, No. 2 / February 2020 / Journal of the Optical Society of America A Research Article

Fig. 5. Second-order triangular surface element with three surface nodes at the vertices and three surface nodes at the middle of the edges is illus-
trated. The quadratic interpolation scheme mapped onto a triangular surface element with the local surface variables (ξ , η) has been demonstrated,
which is identical to those used in the finite element literature.

where φ represents the position coordinates or function values
within the element, and φl=1,...,6 are those values at all the nodes
of the element. We employ standard mapping techniques as
used in finite elements to transform each quadratic element into
a triangular standard element on which Gaussian quadrature
can be used (taking into account the Jacobian of transformation
as well).

Consider the i th row of H or G that corresponds to the
observation point x0 locating at node i on S, for the items
are off-diagonal that corresponds to the computation point x
locating at node j 6= i on S, we have

Hij =

m∑
l=1

∫
SEl

Cl
∂G
∂n

dSE l , (B3a)

Gij =

m∑
l=1

∫
SEl

Cl GdSE l , (B3b)

where m represents the number of elements that share node
j and Cl corresponds to the weight for the node j from the
element l based on the quadratic interpolation in Eq. (B2). For
the diagonal entries, we have

Hii =

m∑
l=1

∫
SEl

[
Cl
∂G
∂n
− g (r)

∂G
∂n
+
∂g (r)
∂n

G
]

dSE i

−

M∑
l=1,l 6=i

∫
SEl

g (r)
∂G
∂n

dSE l +

M∑
l=1,l 6=i

∫
SEl

∂g (r)
∂n

GdSE l ,

(B4a)

Gii =

m∑
l=1

∫
SEl

[
Cl G + f (r)

∂G
∂n
−
∂ f (r)
∂n

G
]

dSE l

+

M∑
l=1,l 6=i

∫
SEl

f (r)
∂G
∂n

dSE l −

M∑
l=1,l 6=i

∫
SEl

∂ f (r)
∂n

GdSE l ,

(B4b)

where M is the total number of the surface elements, m is the
number of elements that share the node i , and Cl corresponds
for the weight for the node i from the element l based on the
quadratic interpolation in Eq. (B2).

It is worth emphasizing again that the integrands in Eq. (8)
are regular, so are those in Eqs. (B3) and (B4). As such, all matrix
entries of H or G can be obtained by using the standard quadra-
ture, for example, a 12-point Gauss-quadrature scheme to
evaluate the integrals over each surface element.
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